Bile acids, non-alcoholic fatty liver and pancreatic disease: chained by ursodeoxycholic acid?
PDF (Русский)
DOCX (Українська)


non-alcoholic fatty liver disease, non-alcoholic fatty pancreatic disease, metabolic syndrome, bile acids, ursodeoxycholic acid.

How to Cite

Gubergrits, N. B., Byelyayeva, N. V., & Mozhyna, T. L. (2020). Bile acids, non-alcoholic fatty liver and pancreatic disease: chained by ursodeoxycholic acid?. Herald of Pancreatic Club, 49(4), 42-50.

Abstract views: 30
PDF Downloads: 20 PDF Downloads: 7


Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic fatty pancreatic disease (NAFPD) develop against the background of metabolic syndrome, systemic insulin resistance, oxidative stress, changes in lipid and carbohydrate metabolism. There are a number of similarities between NAFLD and NAFPD: the natural course of diseases proceeds from steatosis through inflammation to fibrosis and cancer, one of the etiopathogenetic factors is the disbalance of bile acids synthesis and low expression of farnesoid receptor X (FXR). One of the possible methods of treatment NAFLD and NAFPD is a correction of the biosynthesis of bile acids and increase FXR expression with FXR agonists. Ursodeoxycholic acid (UDCA) is a selective FXR agonist. It has a multipled spectrum of actions: anticholestatic, anti-apoptic, antioxidant, cytoprotective, antifibrotic, hypocholesterolemic, immunomodulatory, hepatoprotective. The ability of UDCA correct lipid and carbohydrate metabolism in combination with anti-inflammatory and antiapoptic effects may be of great importance for the treatment of NAFLD and NAFPD. The article reviews the results of clinical and experimental studies describing the efficacy of UDCA in NAFLD and some pancreatic diseases. It has been suggested that the therapy of UDCA can reduce the severity of NAFLD and NAFPDand improve the functional activity of hepatocytes and β cells. The need for randomized clinical trials was emphasized in order to make an informed decision on the expediency of including UDCA in the treatment of NAFLD and NAFPD.
PDF (Русский)
DOCX (Українська)


1. Al-Salami H., Mamo J.C., Mooranian A. et al. Long-term supplementation of microencapsulated ursodeoxycholic acid prevents hypertension in a mouse model of insulin resistance.Exp. Clin. Endocrinol. Diabetes. 2017. Vol. 125, No 1. P. 28–32.
2. Catanzaro R., Cuffari B., Italia A., Marotta F. Exploring the metabolic syndrome: Nonalcoholic fatty pancreas disease. World J. Gastroenterol. 2016. Vol. 22, No 34. P. 7660–7675.
3. Chen Y.S., Liu H.M., Lee T. Y. Ursodeoxycholic acid regulates hepatic energy homeostasis and white adipose tissue macrophages polarization in leptin-deficiency obese mice.Cells. 2019. Vol. 8, No 3. P. 253.
4. Chen J., Deng W., Wang J., Shao Y. et al. Primary bile acids as potential biomarkers for the clinical grading of intrahepatic cholestasis of pregnancy. Cells. 2019. Vol. 8. P. 1358.
5. Ding L., Yang L., Wang Z., Huang W. Bile acid nuclear receptor FXR and digestive system diseases.Acta Pharm. Sin. B. 2015. Vol. 5, No 2. P. 135–144.
6. Dite P., Blaho M., Bojkova M., Jabandziev P., Kunovsky L. Nonalcoholic fatty pancreas disease: clinical consequences. Dig. Dis. 2020. Vol. 38, No 2. P. 143–149.
7. Drzymała-Czyż S., Jończyk-Potoczna K., Lisowska A., Stajgis M., Walkowiak J. Supplementation of ursodeoxycholic acid improves fat digestion and absorption in cystic fibrosis patients with mild liver involvement.Eur. J. Gastroenterol. Hepatol. 2016. Vol. 28, No 6. P. 645–649.
8. Ferslew B.C., Xie G., Johnston C., Su M. et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig. Dis. Sci. 2015. Vol. 60. P. 3318–3328.
9. Gheibi S., Gouvarchin Ghaleh H.E., Motlagh B. M., Azarbayjani A. F., Zarei L. Therapeutic effects of curcumin and ursodexycholic acid on non-alcoholic fatty liver disease.Biomed Pharmacother. 2019. Vol. 115. P. 108938.
10. Goossens J.F., Bailly C. Ursodeoxycholic acid and cancer: From chemoprevention to chemotherapy.Pharmacol. Ther. 2019. Vol. 203. P. 107396.
11. Gottlieb A., Canbay A. Why bile acids are so important in non-alcoholic fatty liver disease (NAFLD) progression.Cells. 2019. Vol. 8, No 11. P. 1358.
12. Haeusler R.A., Camastra S., Nannipieri M. et al. Increased bile acid synthesis and impaired bile acid transport in human obesity.J. Clin. Endocrinol. Metab. 2016. Vol. 101, No 5. P. 1935–1944.
13. Horvatits T., Trauner M, Fuhrmann V. Hypoxic liver injury and cholestasis in critically ill patients. Curr. Opin. Crit. Care. 2013. Vol. 19. P. 128–132.
14. Hu J., Hong W., Yao K. N., Zhu X. H., Chen Z. Y., Ye L. Ursodeoxycholic acid ameliorates hepatic lipid metabolism in LO2 cells by regulating the AKT/mTOR/SREBP-1 signaling pathway.World J. Gastroenterol. 2019. Vol. 25, No 12. P. 1492–1501.
15. Kalhan S.C., Guo L., Edmison J., Dasarathy S., McCullough A. et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metab. Clin. Exp. 2011. Vol. 60. P. 404–413.
16. Katona M., Hegyi P., Kui B. et al. A novel, protective role of ursodeoxycholate in bile-induced pancreatic ductal injury.Am. J. Physiol. Gastrointest. Liver Physiol. 2016. Vol. 310, No 3. P. G193–G204.
17. Kim D.J., Yoon S., Ji S. C. et al. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction [published correction appears in Sci. Rep. 2019. Vol. 9, No 1. P. 17003].Sci. Rep. 2018. Vol. 8, No 1. P. 11874.
18. Kim E.K., Cho J.H., Kim E., Kim Y. J. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth.PLoS One. 2017. Vol. 12, No 7. P. e0181183.
19. Kim Y.J., Jeong S.H., Kim E. K., Kim E. J., Cho J. H. Ursodeoxycholic acid suppresses epithelial-mesenchymal transition and cancer stem cell formation by reducing the levels of peroxiredoxin II and reactive oxygen species in pancreatic cancer cells.Oncol. Rep. 2017. Vol. 38, No 6. P. 3632–3638.
20. Kumar R., Priyadarshi R.N., Anand U. Non-alcoholic fatty liver disease: growing burden, adverse outcomes and associations. J. Clin. Transl. Hepatol. 2020. Vol. 8, No 1. P. 76–86.
21. Lajczak-McGinley N.K., Porru E., Fallon C. M. et al. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis.Physiol. Rep. 2020. Vol. 8, No 12. P. e14456.
22. Legry V., Francque S, Haas J., Verrijken A., Caron S. et al. Bile acid alterations are associated with insulin resistance, but not with nash, in obese subjects. J. Clin. Endocrinol. Metab. 2017. Vol. 102. P. 3783–3794.
23. Liu T., Yang H., Fan W. et al. Mechanisms of MAFG dysregulation in cholestatic liver injury and development of liver cancer.Gastroenterology. 2018. Vol. 155, No 2. P. 557–571. e14.
24. Long S., Gahan C., Joyce S. Interactions between gut bacteria and bile in health and disease. Mol. Asp. Med. 2017. Vol. 56. P. 54–65.
25. Mališová L., Kováčová Z., Koc M., Kračmerová J., Stich V., Rossmeislová L. Ursodeoxycholic acid but not tauroursodeoxycholic acid inhibits proliferation and differentiation of human subcutaneous adipocytes.PLoS One. 2013. Vol. 8, No 12. P. e82086.
26. Mooranian A., Zamani N., Luna G. et al. Bile acid-polymer-probucol microparticles: protective effect on pancreatic β-cells and decrease in type 1 diabetes development in a murine model.Pharm. Dev. Technol. 2019. Vol. 24, No 10. P. 1272–1277.
27. Mouillot T., Beylot M., Drai J. et al. Effect of bile acid supplementation on endogenous lipid synthesis in patients with short bowel syndrome: A pilot study.Clin. Nutr. 2020. Vol. 39, No 3. P. 928–934.
28. Mueller M., Castro R. E., Thorell A. et al. Ursodeoxycholic acid: Effects on hepatic unfolded protein response, apoptosis and oxidative stress in morbidly obese patients.Liver Int. 2018. Vol. 38, No 3. P. 523–531.
29. Mueller M., Thorell A., Claudel T. et al. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity.J. Hepatol. 2015. Vol. 62, No 6. P. 1398–1404.
30. Okushin K., Tsutsumi T., Enooku K., Fujinaga H. et al. The intrahepatic expression levels of bile acid transporters are inversely correlated with the histological progression of nonalcoholic fatty liver disease. J. Gastroenterol. 2016. Vol. 51. P. 808–818.
31. Pearson T., Caporaso J.G., Yellowhair M. et al. Effects of ursodeoxycholic acid on the gut microbiome and colorectal adenoma development.Cancer Med. 2019. Vol. 8, No 2. P. 617–628.
32. Pinte L., Balaban D.V., Băicuş C., Jinga M. Non-alcoholic fatty pancreas disease — practices for clinicians. Rom J. Intern. Med. 2019. Vol. 57, No 3. P. 209–219.
33. Ramkissoon R., Gardner T.B. Pancreatic steatosis: an emerging clinical entity. Am. J. Gastroenterol. 2019. Vol. 114, No 11. P. 1726–1734.
34. Šarenac T.M., Mikov M. Bile acid synthesis: from nature to the chemical modification and synthesis and their applications as drugs and nutrients.Front Pharmacol. 2018. Vol. 9. P. 939.
35. Shah N., Rocha J.P., Bhutiani N., Endashaw O. Nonalcoholic fatty pancreas disease. Nutr. Clin. Pract. 2019. Vol. 34. Suppl. 1. P. S49–S56.
36. Shima K.R., Ota T., Kato K. I. et al. Ursodeoxycholic acid potentiates dipeptidyl peptidase-4 inhibitor sitagliptin by enhancing glucagon-like peptide-1 secretion in patients with type 2 diabetes and chronic liver disease: a pilot randomized controlled and add-on study.BMJ Open Diabetes Res Care. 2018. Vol. 6, No 1. P. e000469.
37. Soroka C.J., Boyer J.L. Biosynthesis and trafficking of the bile salt export pump, BSEP: Therapeutic implications of BSEP mutations. Mol. Asp. Med. 2014. Vol. 37. P. 3–14.
38. Tang R., Wei Y., Li Y. et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy.Gut. 2018. Vol. 67, No 3. P. 534–541.
39. Tsubakio K., Kiriyama K., Matsushima N., et al. Autoimmune pancreatitis successfully treated with ursodeoxycholic acid.Intern. Med. 2002. Vol. 41, No 12. P. 1142–1146.
40. Tsuchida T., Shiraishi M., Ohta T., Sakai K., Ishii S. Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet-fed KK-Ay mice.Metabolism. 2012. Vol. 61, No 7. P. 944–953.
41. Ward J.B.J., Lajczak N.K., Kelly O. B. et al. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon.Am. J. Physiol. Gastrointest. Liver Physiol. 2017. Vol. 312, No 6. P. G550–G558.
42. Weingarden A.R., Chen C., Zhang N. et al. Ursodeoxycholic acid inhibits Clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection.J. Clin. Gastroenterol. 2016. Vol. 50, No 8. P. 624–630.
43. Weng S., Zhou J., Chen X., Sun Y., Mao Z., Chai K. Prevalence and factors associated with nonalcoholic fatty pancreas disease and its severity in China. Medicine (Baltimore). 2018. Vol. 97, No 26. P. e11293.
44. Wu Y.C., Chiu C.F., Hsueh C.T., Hsueh C. T. The role of bile acids in cellular invasiveness of gastric cancer.Cancer Cell Int. 2018. Vol. 18. P. 75.
45. Xiang Z., Chen Y.P., Ma K.F. et al. The role of ursodeoxycholic acid in non-alcoholic steatohepatitis: a systematic review.BMC Gastroenterol. 2013. Vol. 13. P. 140.
46. Yu Q., Jiang Z., Zhang L. Bile acid regulation: A novel therapeutic strategy in non-alcoholic fatty liver disease. Pharm. Ther. 2018. Vol. 190. P. 81–90.