Possibilities of modern drug correction of metabolic syndrome: the role of bile acids
PDF (Русский)


ursodeoxycholic acid, metabolic syndrome, non-alcoholic fatty liver disease, hyperglycemia, hypercholesterolemia, vascular atherosclerosis.

How to Cite

Gubergrits, N. B., Byelyayeva, N. V., Mozhyna, T. L., Lukashevich, G. M., & Fomenko, P. G. (2020). Possibilities of modern drug correction of metabolic syndrome: the role of bile acids. Herald of Pancreatic Club, 47(2), 100-106. https://doi.org/10.33149/vkp.2020.02.12

Abstract views: 23
PDF Downloads: 15


After the discovery of the method of synthesis of ursodeoxycholic acid (UDCA) and the publication of evidence confirming its ability to reduce the lithogenic properties of bile, active clinical use of UDCA began around the world. This drug, in addition to the proven choleretic, cytoprotective, litholytic, anti-apoptotic effects, has a signaling activity that allows UDCA to influence metabolic syndrome components such as hyperglycemia, hypercholesterolemia.

Under the influence of UDCA, FXR is activated in the liver, which leads to an increase in the activity of glycogen synthase and decrease in the level of glycaemia. Another mechanism by which UDCA affects glycaemia is mediated by the activation of the TGR5 membrane receptor under the influence of this bile acid, as well as the release of insulin from pancreatic β-cells and decrease in postprandial glycaemia. When taking UDCA, the concentration of glycosylated hemoglobin, insulin in the blood plasma decreases the effects of insulin resistance decrease. UDCA has a beneficial effect on the vascular wall, reducing the severity of atherosclerotic lesions and normalizing the average thickness of the intima-media complex. UDCA improves lipid metabolism by regulating the activity of the AKT/ mTOR-signaling pathway, reduces the synthesis of cholesterol, and decreases the fractional rate of cholesterol synthesis and the fractional rate of triglyceride synthesis. It is proved that UDCA administration is accompanied by a drop in the level of total cholesterol and cholesterol of low-density lipoproteins. Normalization of the metabolism of glucose, triglycerides, cholesterol and the insulin-signaling pathway under the influence of bile acids is the basis for the use of UDCA for the correction of metabolic syndrome, as well as its hepatological manifestations - NAFLD.

PDF (Русский)


1. Пирогова И. Ю., Яковлева С. В., Неуймина Т. В. и др. Плейотропные эффекты урсодезоксихолевой кислоты при неалкогольной жировой болезни печени и метаболическом синдроме. Consilium Medicum. 2019. № 21(8). С. 65–70.
2. Aguilar M., Bhuket T., Torres S., Liu B., Wong R. J. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA. 2015. No 313. Р. 1973–1974.
3. Ashby K., Navarro Almario E., Tong W., Borlak J., Mehta R. et al. Review article: therapeutic bile acids and the risks for hepatotoxicity. Aliment. Pharmacol. Ther. 2018. No 47. P. 1623–1638.
4. Bellanti F., Villani R., Tamborra R., Blonda M., Iannelli G. et al. Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression. Redox Biol. 2018. Vol. 15. P. 86–96.
5. Benedict M., Zhang X. Non-alcoholic fatty liver disease: an expanded review. World J. Hepatol. 2017. No 9. P. 715–732.
6. Chávez-Talavera O., Tailleux A., Lefebvre P., Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2010. No 152. P. 1679–1694.e3.
7. Chung J., An S., Kang S., Kwon K. Ursodeoxycholic acid (UDCA) exerts anti-atherogenic effects by inhibiting RAGE signaling in diabetic atherosclerosis. PLoS One. 2016. No 11. e0147839.
8. Comeglio P., Morelli A., Adorini L., Maggi M., Vignozzi L. Beneficial effects of bile acid receptor agonists in pulmonary disease models. Expert Opin. Investig. Drugs. 2017. No 26. P. 1215–1228.
9. Ðanić M, Stanimirov B, Pavlović N, Golocorbin-Kon S. et al. Pharmacological applications of bile acids and their derivatives in the treatment of metabolic syndrome. Front. Pharmacol. 2018. No 9. P. 1382.
10. Demir M., Lang S., Steffen H. M. Nonalcoholic fatty liver disease — current status and future directions. J. Dig. Dis. 2015. No 16. P. 541–557.
11. Duboc H., Tache Y., Hofmann A. F. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig. Liver Dis. 2014. Vol. 46, No 4. P. 302–312.
12. Gioiello A., Cerra B., Mostarda S., Guercini C., Pellicciari R. et al. Bile acid derivatives as ligands of the farnesoid x receptor: molecular determinants for bile acid binding and receptor modulation. Curr. Top. Med. Chem. 2014. No 14. P. 2159–2174.
13. Gruben N., Shiri-Sverdlov R., Koonen D. P., Hofker M. H. Nonalcoholic fatty liver disease: a main driver of insulin resistance or a dangerous liaison? Biochem. Biophys. Acta. 2014. No 1842. P. 2329–2343.
14. Hu J., Hong W., Yao K. N., Zhu X. H., Chen Z. Y. et al. Ursodeoxycholic acid ameliorates hepatic lipid metabolism in LO2 cells by regulating the AKT/mTOR/SREBP-1 signaling pathway. World J. Gastroenterol. 2019. Vol. 25, No 12. P. 1492–1501.
15. Jia W., Xie G., Jia W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2017. No 15. P. 111–128.
16. Kaur J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014. No 94. P. 3162.
17. Lam D., LeRoith D. The worldwide diabetes epidemic. Curr. Opin. Endocrinol. Diabetes Obes. 2012. No 19. P. 93–96.
18. McCracken E., Monaghan M., Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018. No 36. P. 14–20.
19. Mencarelli A., Fiorucci S. FXR an emerging therapeutic target for the treatment of atherosclerosis. J. Cell. Mol. Med. 2010. No 14. P. 79–92.
20. Molinaro A., Wahlstrom A., Marschall H. Role of bile acids in metabolic control. Trends Endocrinol. Metab. 2018. No 29. P. 31–41.
21. Ozel Coskun B. D, Yucesoy M, Gursoy S. et al. Effects of ursodeoxycholic acid therapy on carotid intima media thickness, apolipoprotein A1, apolipoprotein B, and apolipoprotein B/A1 ratio in nonalcoholic steatohepatitis. Eur. J. Gastroenterol Hepatol. 2015. Vol. 27, No 2. P. 142–149.
22. Renga B, Mencarelli A, Vavassori P, Brancaleone V, Fiorucci S. The bile acid sensor FXR regulates insulin transcription and secretion. Biochem. Biophys. Acta. No 1802, P. 363–372.
23. Sánchez-García A., Sahebkar A., Simental-Mendía M., Simental-Mendía L. E. Effect of ursodeoxycholic acid on glycemic markers: A systematic review and meta-analysis of clinical trials. Pharmacol. Res. 2018. No 135. P. 144–149.
24. Sinisalo J., Vanhanen H., Pajunen P., Vapaatalo H. et al. Ursodeoxycholic acid and endothelial-dependent, nitric oxide-independent vasodilatation of forearm resistance arteries in patients with coronary heart disease. Br. J. Clin. Pharmacol. 1999. Vol. 47, No 6. P. 661–665.
25. Shapiro H., Kolodziejczyk A., Halstuch D., Elinav E. Bile acids in glucose metabolism in health and disease. J. Exp. Med. 2018. No 215. P. 383–396.
26. Stanimirov B., Stankov K., Mikov M. Pleiotropic functions of bile acids mediated by the farnesoid X receptor. Acta Gastroenterol. Belg. 2012. No 75. P. 389–398.
27. Tsuchida T., Shiraishi M., Ohta T., Sakai K., Ishii S. Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet-fed KK-Ay mice. Metabolism. 2012. Vol. 61, No 7. P. 944–953.